[ACS Energy Lett.] Colloidal CsPbX3 (X=Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability
Collaborative work led by the Kovalenko group. New ligand chemistry towards stable CsPbX3 colloidal nanocrystals.
Colloidal lead halide perovskite nanocrystals (NCs) have recently emerged as versatile photonic sources. Their processing and optoelectronic applications are hampered by the loss of colloidal stability and structural integrity due to the facile desorption of surface capping molecules during isolation and purification. To address this issue, herein, we propose a new ligand capping strategy utilizing common and inexpensive long-chain zwitterionic molecules such as 3-(N,N-dimethyloctadecylammonio) propanesulfonate, resulting in much improved chemical durability. In particular, this class of ligands allows for the isolation of clean NCs with high photoluminescence quantum yields (PL QY) of above 90% after 4 rounds of precipitation/redispersion along with much higher overall reaction yields of uniform and colloidal dispersible NCs. Densely packed films of these NCs exhibit high PL QY values and effective charge transport. Consequently, they exhibit photoconductivity and low thresholds for amplified spontaneous emission of 2 μJ cm-2 under femtosecond optical excitation and are suited for efficient light-emitting diodes.
external page ACS Energy Lett. doi: 10.1021/acsenergylett.8b00035